Reduction of Folate by Dihydrofolate Reductase from Thermotoga maritima.

نویسندگان

  • E Joel Loveridge
  • Lukas Hroch
  • Robert L Hughes
  • Thomas Williams
  • Rhidian L Davies
  • Antonio Angelastro
  • Louis Y P Luk
  • Giovanni Maglia
  • Rudolf K Allemann
چکیده

Mammalian dihydrofolate reductases (DHFRs) catalyze the reduction of folate more efficiently than the equivalent bacterial enzymes do, despite typically having similar efficiencies for the reduction of their natural substrate, dihydrofolate. In contrast, we show here that DHFR from the hyperthermophilic bacterium Thermotoga maritima can catalyze reduction of folate to tetrahydrofolate with an efficiency similar to that of reduction of dihydrofolate under saturating conditions. Nuclear magnetic resonance and mass spectrometry experiments showed no evidence of the production of free dihydrofolate during either the EcDHFR- or TmDHFR-catalyzed reductions of folate, suggesting that both enzymes perform the two reduction steps without release of the partially reduced substrate. Our results imply that the reaction proceeds more efficiently in TmDHFR than in EcDHFR because the more open active site of TmDHFR facilitates protonation of folate. Because T. maritima lives under extreme conditions where tetrahydrofolate is particularly prone to oxidation, this ability to salvage folate may impart an advantage to the bacterium by minimizing the squandering of a valuable cofactor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydride transfer during catalysis by dihydrofolate reductase from Thermotoga maritima.

DHFR (dihydrofolate reductase) catalyses the metabolically important reduction of 7,8-dihydrofolate by NADPH. DHFR from the hyperthermophilic bacterium Thermotoga maritima (TmDHFR), which shares similarity with DHFR from Escherichia coli, has previously been characterized structurally. Its tertiary structure is similar to that of DHFR from E. coli but it is the only DHFR characterized so far th...

متن کامل

Different Dynamical Effects in Mesophilic and Hyperthermophilic Dihydrofolate Reductases

The role of protein dynamics in the reaction catalyzed by dihydrofolate reductase from the hyperthermophile Thermotoga maritima (TmDHFR) has been examined by enzyme isotope substitution ((15)N, (13)C, (2)H). In contrast to all other enzyme reactions investigated previously, including DHFR from Escherichia coli (EcDHFR), for which isotopic substitution led to decreased reactivity, the rate const...

متن کامل

Moritella cold-active dihydrofolate reductase: are there natural limits to optimization of catalytic efficiency at low temperature?

Adapting metabolic enzymes of microorganisms to low temperature environments may require a difficult compromise between velocity and affinity. We have investigated catalytic efficiency in a key metabolic enzyme (dihydrofolate reductase) of Moritella profunda sp. nov., a strictly psychrophilic bacterium with a maximal growth rate at 2 degrees C or less. The enzyme is monomeric (Mr=18,291), 55% i...

متن کامل

Characterization of a thioredoxin-thioredoxin reductase system from the hyperthermophilic bacterium Thermotoga maritima.

A thioredoxin reductase and a thioredoxin were purified to homogeneity from a cell extract of Thermotoga maritima. The thioredoxin reductase was a homodimeric flavin adenine dinucleotide (FAD)-containing protein with a subunit of 37 kDa estimated using SDS-PAGE, which was identified to be TM0869. The amino acid sequence of the enzyme showed high identities and similarities to those of typical b...

متن کامل

Quinone- and nitroreductase reactions of Thermotoga maritima thioredoxin reductase.

The Thermotoga maritima NADH:thioredoxin reductase (TmTR) contains FAD and a catalytic disulfide in the active center, and uses a relatively poorly studied physiological oxidant Grx-1-type glutaredoxin. In order to further assess the redox properties of TmTR, we used series of quinoidal and nitroaromatic oxidants with a wide range of single-electron reduction potentials (E(1)7, -0.49-0.09 V). W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 56 13  شماره 

صفحات  -

تاریخ انتشار 2017